Researchers are rejoicing over their newly-developed contraption that can generate clean electricity “from thin air”.

Scientists at the University of Massachusetts Amherst have designed a device that uses a natural protein to create electricity from moisture in the air: a new technology they say could have significant implications for the future of renewable energy, climate change and in the future of medicine.

As reported this week in Nature, the laboratories of electrical engineer Jun Yao and microbiologist Derek Lovley at UMass Amherst have created a device they call an “Air-gen” or air-powered generator, with electrically conductive protein nanowires produced by the microbe Geobacter.

The Air-gen connects electrodes to the protein nanowires in such a way that electrical current is generated from the water vapor naturally present in the atmosphere.

RELATED: First Fully Rechargeable Carbon Dioxide Battery is Seven Times More Efficient Than Lithium Ion

“We are literally making electricity out of thin air,” says Yao. “The Air-gen generates clean energy 24/7.”

Lovely, who has advanced sustainable biology-based electronic materials over three decades, adds, “It’s the most amazing and exciting application of protein nanowires yet.”

The new technology developed in Yao’s lab is non-polluting, renewable and low-cost. It can generate power even in areas with extremely low humidity such as the Sahara Desert. It has significant advantages over other forms of renewable energy including solar and wind, Lovley says, because unlike these other renewable energy sources, the Air-gen does not require sunlight or wind, and “it even works indoors.”

Graphic image of a thin film of protein nanowires generating electricity from atmospheric humidity. Photo by UMass Amherst/Yao and Lovley labs.

The Air-gen device requires only a thin film of protein nanowires less than 10 microns thick, the researchers explain. The bottom of the film rests on an electrode, while a smaller electrode that covers only part of the nanowire film sits on top. The film adsorbs water vapor from the atmosphere.

A combination of the electrical conductivity and surface chemistry of the protein nanowires, coupled with the fine pores between the nanowires within the film, then establishes the conditions that generate an electrical current between the two electrodes.

The researchers say that the current generation of Air-gen devices are able to power small electronics, and they expect to bring the invention to commercial scale soon.

The current Air-gen device can power small devices. Photo by UMass Amherst/Yao and Lovley labs.

Next, the scientists plan to continue their research by developing a small Air-gen “patch” that can power electronic wearables such as health and fitness monitors and smart watches, which would eliminate the requirement for traditional batteries.

They also hope to develop Air-gens to apply to cell phones to eliminate periodic charging.

Yao says: “The ultimate goal is to make large-scale systems. For example, the technology might be incorporated into wall paint that could help power your home. Or, we may develop stand-alone air-powered generators that supply electricity off the grid.

LOOK: Generator That Creates Electricity From Gravity Could Revolutionize Renewable Energy

“Once we get to an industrial scale for wire production, I fully expect that we can make large systems that will make a major contribution to sustainable energy production.”

In addition to the Air-gen, Yao’s laboratory has developed several other applications with the protein nanowires. “This is just the beginning of new era of protein-based electronic devices,” he said.

Reprinted from University of Massachusetts Amherst

Power Up With Positivity By Sharing The Good News With Your Friends On Social Media…

Leave a Reply